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Abstract— This paper presents a loop-bandwidth control
algorithm for adaptive scalar tracking loops used in modern
digital global navigation satellite system (GNSS) receivers. This
algorithm modifies the noise bandwidth of the loop filter. The
updated loop-bandwidth balances the signal dynamics and noise
through a weighting function. The agility of the estimators defines
the sensitivity of the algorithm against dynamics. This algorithm
is applicable to the delay-, frequency- or phase-locked-loop (DLL,
FLL, PLL) and to any order loop-filter, making it simpler to
incorporate than other methods. The algorithm is first analyzed
and evaluated in a software receiver. Second, it is implemented in
an open software interface GNSS hardware receiver for testing
in simulated scenarios with real-world conditions. The scenarios
represent different dynamics and noise cases. The results show
the algorithm’s generic usability and advantage over fixed loop
settings, while preserving minimum tracking jitter and stability.

Index Terms—global navigation satellite system (GNSS), adap-
tive scalar tracking loop (A-STL), loop-bandwidth control algo-
rithm (LBCA).

I. INTRODUCTION

A global navigation satellite system (GNSS) receiver ac-
quires and tracks satellite signals [1]. Acquisition and tracking
are necessary in order to decode the navigation message and
determine the pseudorange to a given satellite. The better the
receiver can track the signal, the better the range estimation,
and, in turn, the more precise and reliable the position,
velocity, and time (PVT) solution of the receiver. Therefore, a
GNSS receiver must deploy the best possible means to track
these signals for optimum performance. However, noise, re-
ceiver dynamics, and multipath effects make this a challenging
task.

Traditionally, a scalar tracking loop (STL) is employed for
signal tracking. An STL synchronizes to the carrier frequency,
carrier phase, and code phase of each received GNSS signal.
The tracking loop consists of a correlator, a discriminator, a
loop filter, and a numerically controlled oscillator (NCO) [2].
The integration time Ti, the correlator spacing, the discrimina-
tor type, the order and the noise bandwidth of the loop filter,
and the used oscillator determine the tracking performance
at a given carrier-to-noise density ratio (C/N0). Depending
on the scenario, different loop settings are appropriate. For
example, in a static scenario where the receiver is not moving,
long integration times and small loop-bandwidths may be used
for high precision tracking. On the contrary, in a dynamic

scenario like for vehicular applications, larger loop-bandwidths
are required such that the tracking loop does not lose lock.
Therefore, it is challenging to design a loop that is optimal for
all scenarios. A simple method is to select different parameters
based on the scenario, but this requires the user to know the
scenario and to update the parameters manually.

One issue with tracking loops is the ability to stay locked
onto the signal in the presence of dynamic movements of
the receiver. Dynamics stress the tracking loop. Changes in
position, velocity, acceleration, jerk, or even higher orders
of change characterize this parameter. The specific effect of
the dynamics and the capability to stay in lock depend on
the tracking loop-type (e.g., delay locked loop (DLL), phase
locked loop (PLL), or frequency locked loop (FLL)), the loop
order, and the loop-bandwidth. Typically higher-order loops
can accommodate higher-order dynamics; however, this comes
at the price of complexity, higher likelihood of instability,
and delayed responses. Similarly, larger loop-bandwidths can
respond quicker to disturbances but also come at the risk of
increased instability and loop jitter. As such, a trade-off for
tracking loop design exists.

The trade-off between user dynamics and noise compro-
mises the validity of conventional STLs. Therefore, more
robust tracking techniques are required. These techniques are
divided into three main categories [3].

The first category is the constant bandwidth technique [4].
This is related to minor modifications in the STL architecture.
No adaption of the loop-bandwidth is done. The integration
time Ti, the type of discriminator, and the order of the
loop filter are the parameters used to improve robustness [5].
However, in harsh and diverse scenarios, the STL cannot adjust
for the required resilience.

The second category is the variable loop-bandwidth track-
ing technique. It solves the previous limitation using adaptive
loop-bandwidth algorithms [6]–[11]. The adaption algorithm
sets a connection between the loop-bandwidth and time-
varying scenario conditions. This category allows adjusting the
loop-bandwidth to an optimal value for a given scenario. One
method of this category is the fast adaptive bandwidth (FAB)
technique. It estimates permanently the input signal parameters
(thermal noise, phase noise or steady state error (SSE)) of the
STL using accurate models. According to these estimations,
the optimal loop-bandwidth is calculated. A loop-bandwidth

978-1-7281-0244-3/20/$31.00 ©2020 IEEE 1178

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:05:36 UTC from IEEE Xplore.  Restrictions apply. 



dependent cost function can be used [6], [7]. Equaling to null
the first derivative of the cost function with respect to the loop-
bandwidth leads to the optimal loop-bandwidth. Then, the al-
gorithm updates the current loop-bandwidth. Another method
is the estimation of the optimum pole of the loop filter using
a cost function to determine the optimal loop-bandwidth [8],
[9]. Since an abrupt change of the optimal loop-bandwidth
may create tracking instabilities, the update stage uses the
Newton-Raphson method and a low pass filter to smooth the
new estimated pole. In addition, it is possible to create a
cost function based on a weighted sum of estimated statistics
from the discriminator’s output [10]. Another technique from
this category is the fuzzy logic based tracking technique.
A fuzzy logic control algorithm based on the statistics of
the discriminator’s output can be implemented [11]. This
technique simplifies significantly the complexity of the control
algorithm. However, a previous knowledge of the scenario is
required in order to achieve an efficient tracking performance.

The third and last category is the Kalman filtering (KF)-
based tracking techniques. Similar to the second category,
the KF implemented in conventional STLs predicts the loop-
bandwidth depending on the scenario conditions. KF-based
tracking techniques present a lower equivalent noise bandwidth
than traditional STLs for the same signal dynamics [12]. This
leads to a better tracking performance since the KF-based tech-
nique can filter more noise without losing the lock. However,
this comes at the price of more computational complexity.
A KF-based technique for 3rd order digital PLL has been
proposed [13]. The KF reaches a steady state equivalent noise
bandwidth that represents the minimum mean square error
(MSE) between the input and the replica signal generated
by the NCO. This technique estimates the measurement and
process noise covariance considering the thermal noise of
the channel and the SSE of the filter. A variable coefficient
inversely proportional to the C/N0 varies the process noise
covariance, that sets the equivalent noise bandwidth of the
loop. This coefficient determines the sensitivity to dynamics.
Although the proposed weighting method is of great interest,
an incomplete estimation of the noise statistics may lead to
inadequate predictions.

This paper presents a novel bandwidth control algorithm
for STLs. The algorithm adapts the noise bandwidth of the
tracking loops, depending on the dynamics and noise, for the
best performance. Further, this algorithm can be applied to any
loop type and any loop filter order, without the need for ex-
cessive tuning and calibration. The algorithm improves generic
variable loop-bandwidth tracking techniques and stands out for
its simplicity and its stability.

A background on STLs and the theoretical tracking per-
formance is presented in Section II, followed with a detailed
description of the algorithm in Section III. Section IV shows
the results of an adaptive PLL in an open software interface
GNSS hardware receiver. Finally, the conclusions are drawn
in Section V.

II. SCALAR TRACKING LOOP

This section presents the theory to standard STLs [14].
Fig. 1 shows the general model of an STL. The output of
the detector is the error signal θu[n] which is the differ-
ence between the incoming signal y[n; θ[n]] and its replica
y[n; θs[n]]. The loop filter suppresses the noisy errors θu[n]
to a smoothed error rate θ̇[n]. Hence, the filter input is referred
to as an unsmoothed signal and the filter output as a smoothed
one. The order of the loop determines the robustness of the
tracking against high-order dynamics. A higher order means
the possibility to track higher-order components of the error
signal while adding more complexity in the system. The
resulting smoothed error rate θ̇[n] drives the NCO. The NCO
sends the smoothed error θs[n] to the replica generator. The
generated replica signal y[n; θs[n]] approaches y[n; θ[n]] such
that θu[n] is minimized.

Fig. 1: Architecture of a conventional STL

Fig. 2 presents the general structure of the detector. The
mentioned unsmoothed error signal θu[n] is the output of a
discriminator block. This block extracts the error from a vector
of input data. For instance, a phase discriminator measures the
phase between the prompt in-phase and quadrature-phase (IQ)
values of the received signal. Moreover, a code discriminator
measures the code offset from the early, prompt and late IQ
values. Before the discriminator block, the signal goes through
an integration and dump (IAD) module in order to sample
and integrate the signal. The integration time Ti reduces
proportionally the noise of the input data to the discriminator.
A larger integration time Ti achieves more processing gain,
resulting in less noisy errors θu[n]. However, the loop response
becomes slower, and consequently, less robust against signal
dynamics.

Fig. 2: Architecture of the detector

A. Theoretical Tracking Performance

The most significant error sources of an STL are the
smoothed thermal noise σsthermal and the dynamic stress error
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θsse. The three-sigma rule-of-thumb is applied to the STL in
order to have a moderate jitter in the tracking channel [15]:

σsθ = σsthermal +
θsse

3
≤ σthθs (1)

where σthθs is the one-sigma rule threshold. Values of σsθ greater
than σthθs mean that the lock of the tracking is most probably
lost. This upper threshold depends on the type of discriminator.
For instance, the one-sigma rule threshold in meters for a two-
quadrant arctangent discriminator is:

σthθs =
Ω

12
× λ

2π
=

π

12
× λ

2π
=

λ

24
(2)

where λ is the wavelength of the GNSS signal and Ω is the
phase pull-in range in radians. Consider that the one-sigma
rule threshold is one-third of the three-sigma rule threshold.
In addition, one-fourth of the phase pull-in range is selected to
have a conservative threshold. That is the reason of including
the 1/12 factor in (2).

The smoothed thermal noise jitter in meters of a pth order
Costas PLL with an arctangent discriminator is [15]:

σsthermal =
λ

2π

√
B

C/N0

(
1 +

1

2TiC/N0

)
(3)

In addition, the dynamic stress error in meters can be
expressed as:

θsse =
( µ
B

)p
· ∂

pR

∂tp
(4)

where ∂pR/∂tp is the maximum line-of-sight (LOS) steady
state error dynamics and µ is the relation coefficient between
the noise loop-bandwidth B and the natural frequency of the
tracking loop.

The Cramér-Rao bound (CRB) indicates the minimum er-
ror variance of an unbiased estimator [16]. In a stationary
scenario, the CRB of the smoothed error in a Costas PLL
CRBsPLL is the thermal noise variance:

CRBsPLL = (σsthermal)
2 (5)

Considering the STL as a time of arrival (ToA) unbiased
estimator, the relationship between the smoothed and un-
smoothed error jitter is [17]:

σsθ = σuθ
√

2BTi(1− 0.5BTi) (6)

If the loop-bandwidth B tends to zero, then it can be further
simplified:

lim
B→0

σsθ = σuθ
√

2BTi : (7)

The resulting CRB of the unsmoothed error is:

CRBuPLL =

(
λ

2π

)2 [
1

2TiC/N0

(
1 +

1

2TiC/N0

)]
(8)

CRBuPLL indicates the minimum variance at the output of
the discriminator and is independent on the loop-bandwidth.

In order to decide if the tracking is most probably lost or
not, the same conservative one-sigma rule threshold used for
the smoothed error is applied to the unsmoothed error:

σthθu = σthθs (9)
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(a) Static scenario (∂3R/∂t3 = 0.003g/s)
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(b) High dynamic scenario (∂3R/∂t3 = 3g/s)

Fig. 3: Theoretical tracking error difference of a 3th order PLL

where σthθu is the one-sigma rule threshold of θu.
Fig. 3 shows a first theoretical approach of the tracking error

difference in a 3rd order Costas PLL for different C/N0 and
loop-bandwidth levels. The GNSS signal is GPS L1 C/A and
the integration time Ti is set to 20 ms. A static scenario Fig. 3a
and a high dynamic scenario Fig. 3b are shown. These graphs
present the difference between the standard deviation of the
unsmoothed error σuθ and the square root of CRBuPLL. The
one-sigma rule threshold σthθu in meters is also included.

Since it is not probable to have an ideal static scenario due
to unpreventable dynamic sources (e.g. clock drift), the static
scenario includes small dynamics (∂3R/∂t3 = 0.003g/s) in
order to have a closer approximation to real scenarios.

The theoretical optimal normalized dynamics D̄theory is
noteworthy to mention, since it is an important parameter to
consider for the loop-bandwidth control algorithm (LBCA).
D̄theory is the ratio between the dynamics stress error and the
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Fig. 4: Architecture of LBCA

three-sigma thermal noise:

D̄theory =
θsse

3σsthermal + θsse
(10)

For a Costas PLL, at the optimal loop-bandwidth Bopt, the
normalized dynamics depends only on the loop order p:

lim
B→Bopt

D̄theory = D̄opt
theory =

1

1 + 2p
(11)

This information is considered later to determine the weigh-
ting function of the LBCA.

III. LOOP-BANDWIDTH CONTROL ALGORITHM

The time of response of an STL determines the tracking
performance. A slow response time is desired in a noisy sce-
nario, whereas a fast response is preferred in a high dynamic
one. The proposed algorithm modifies the time of response
of an STL depending on the estimated signal dynamics and
noise statistics. The selected parameter that defines the time
of response of an STL is the equivalent noise bandwidth.
Therefore, this algorithm is called loop-bandwidth control
algorithm.

A. Algorithm Description

Fig. 4 shows the diagram of the LBCA for a particular
tracking channel. The proposed LBCA estimates the next loop-
bandwidth B[n + 1], based upon the current loop-bandwidth
B[n] and a control signal c[n]:

B[n+ 1] = B[n] + c[n] (12)

The control signal c[n] is a weighted difference between
the estimated normalized dynamics D̄ and normalized noise
statistics N̄ of the channel. The coefficients g̃ and g are
loop-bandwidth dependent functions that weight D̄ and N̄ ,
respectively:

c[n] = g̃ [n;B[n]] D̄ − g [n;B[n]] N̄ (13)

The inputs of this algorithm are the absolute mean |µuθ [n]|
and the standard deviation σuθ of the unsmoothed error. These

are related with the signal dynamics and noise. A first order
low-pass infinite impulse response (IIR) filter estimates these
statistics. The coefficients α and β determine the speed of the
estimation. In the case of the absolute mean the IIR filter is
applied directly to the discriminator’s output θu:

µuθ [n] = α · µuθ [n− 1] + β · θu[n] (14)

In the case of the standard deviation σuθ , the power of the
unsmoothed error r must be estimated first:

r[n] = α · r[n− 1] + β · θu[n]2 (15)

σuθ [n] =
√
r[n]− µuθ [n]2 (16)

The normalized bandwidth BIIR sets the coefficients of the
IIR filter. BIIR varies according to the integration time of the
correlators Ti and the desired cut-off frequency fco:

BIIR =
fco · Ti

2
(17)

The gain of the IIR filter is unitary:

α+ β = 1 (18)

As mentioned, the coefficients are a function of the selected
normalized bandwidth BIIR [18]:

α = 2− cos (πBIIR)−
√

(2− cos (πBIIR))2 − 1 (19)

The normalization of |µθ[n]| and σθ[n] are D̄ and N̄ :

D̄ =
|µuθ [n]|

|µuθ [n]|+ σuθ [n]
(20)

N̄ =
σuθ [n]

|µuθ [n]|+ σuθ [n]
(21)

The weights g̃ and g are positive functions and bandwidth
dependent. In addition, they are related by the following
expression:

g̃ [n;B[n]] = gMax − g [n;B[n]] (22)
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Fig. 5: Architecture of the weighting function

Equation (13) can be further developed:

c[n] = gMaxD̄ − g [n;B[n]] (N̄ + D̄) (23)

where gMax represents the maximum value of g. Since N̄ + D̄
equals to 1,

c[n] = gMaxD̄ − g [n;B[n]] . (24)

The weighting function g [n;B[n]] determines the impact of
the estimators in the adaptive algorithm. Fig. 5 presents the
structure of g [n;B[n]]. It consists of a linear combination of
m normalized, positive and monotone increasing functions:

g [n;B[n]] =
m∑
k=0

wkfk (Sk(B[n]− Pk)) (25)

Each function fk is shifted by Pk, vertically scaled by wk and
horizontally scaled by Sk. The summation of each wk leads
to the maximum value of g [n;B[n]], gMax:

gMax =

m∑
k=0

wk (26)

This parameter determines the speed of the algorithm to reach
the optimum loop-bandwidth. The higher gMax, the faster the
algorithm reacts to dynamics but also the more sensible it
becomes to the estimators’ noise.

The tendency of g [n;B[n]] is presented in two different
scenarios. In a noisy stationary scenario the signal dynamics
are negligible (D̄ ≈ 0) and the theoretical optimal loop-
bandwidth would tend to zero, since the noise must be filtered
as much as possible. Therefore, the loop-bandwidth must
decrease until it reaches zero. Applying the LBCA in such
a scenario, the control signal becomes a negative function:

c[n] = −g [n;B[n]] (27)

Consequently, the loop-bandwidth decreases every time the
loop is closed. Once the loop-bandwidth tends to zero, the
control signal must stop being negative. This means that the
weighting function must tend to zero when the loop-bandwidth
also tends to zero.

An opposite scenario is a low noisy scenario with high
dynamics. In this case, the normalized dynamic estimate pre-
dominates (D̄ ≈ 1). The theoretical optimal loop-bandwidth
must tend to the highest possible loop-bandwidth in order to
react as fast as possible to signal dynamics. In such scenario,
the control signal is a positive function and increases the loop-
bandwidth every time the loop is closed:

c[n] = gMax − g [n;B[n]] (28)

Due to the increase of the loop-bandwidth, the weighting
function increases and, in turn, the control signal decreases.
The loop-bandwidth reaches its maximum value when the
weighting function tends to gMax.

Supposing that the estimation error is negligibly small, the
updated loop-bandwidth reaches to a point of equilibrium.
The point of equilibrium is achieved when the control signal
c[n] tends to zero and no longer changes the bandwidth. The
control signal is zero when the weighting function g [n;B[n]]
reaches a value that balances the dynamics and the noise
estimations.

B. Extension of the Algorithm

The LBCA can be further extended updating the loop-
bandwidths of L tracking channels:

BL×1[n+ 1] = BL×1[n] + cL×1[n] (29)

BL×1 is the loop-bandwidth vector and cL×1 the control
vector. The latter updates the loop filter’s noise bandwidth for
each tracking channel:

cL×1 = g̃L×LD̄L×1 − gL×LN̄L×1 (30)

where g̃L×L and gL×L are diagonal matrices:

g̃L×L = diag(g̃1, g̃2, . . . , g̃L) (31)

gL×L = diag(g1, g2, . . . , gL) (32)

The performance of the algorithm depends on the family of
functions used to determine the weighting function. The next
section presents a particular case of this generic algorithm
showing a specific family of normalized sigmoid functions.

1182

Authorized licensed use limited to: FhI fur Integrierte Schaltungen Angewandte Elek. Downloaded on February 05,2021 at 09:05:36 UTC from IEEE Xplore.  Restrictions apply. 



C. Sigmoid-based Weighting Function

Considering the defined mathematical model of an LBCA, a
particular case implementation using a sigmoid-based weigh-
ting function is presented. A sigmoid function is defined as:

Sig(x) =
1

1 + e−x
(33)

The properties of the sigmoid function provide great advan-
tages in the LBCA. First, the sigmoid function is bounded to
[0,1]:

0 ≤ Sig(x) ≤ 1 (34)

Second, the reverse function of the sigmoid is:

Sig(−x) = 1− Sig(x) (35)

Third, the derivative of the sigmoid function being biased by
P , horizontally scaled by S and vertically scaled by w is:

w
∂Sig(S(x− P ))

∂x
= wS Sig(S(x−P ))Sig(S(P−x)) (36)

The sigmoid-based weighting function has the following
expression:

gSig [n;B[n]] =
m∑
k=0

wkSigk(Sk(B[n]− Pk)) (37)

Considering the first property of the sigmoid, the sigmoid-
based weighting function is bounded to [0, gmax]:

0 ≤ gSig [n;B[n]] ≤ gmax (38)

Due to the second property, the weighting function used for
the signal dynamics estimation g̃Sig [n;B[n]] can be expressed
as:

g̃Sig [n;B[n]] = gSig [n;−B[n]] (39)

In addition, the derivative of gSig is:

∂gSig [n;B[n]]

∂B[n]
=

m∑
k=0

wk
∂Sigk(Sk(B[n]− Pk))

∂B[n]
(40)

The slope of the weighting function depends on the horizontal
scaling Sk and vertical scaling wk and determines how fast the
weighting function changes. The bigger the slope, the faster
the change of the weighting function.

The control signal using the sigmoid-based weighting func-
tion can be represented as:

c[n] =
m∑
k=0

wkD̄ −
m∑
k=0

wkSigk(Sk(B[n]− Pk)) (41)

The fundamental step of this algorithm is to choose the
appropriate parameters (wk, Sk, Pk) of the sigmoid function.
An empirical approach determines these parameters. First, the
theoretical optimum loop-bandwidth of the STL is calculated
using a loop-bandwidth dependent cost function. This function
is based on a theoretical characterization of the signal dy-
namics and noise of the tracking channel [15]. Second, a real
characterization of the STL implemented in a GNSS receiver
must be done. The theoretical model and the real results

are compared in order to know how much is the difference
between them. Finally, according to the analysis done, the
number of sigmoid functions m, the vertical scaling wk, the
horizontal scaling Sk and the biases Pk are chosen.

The following section compares the theoretical tracking
performance of the PLL presented in Section II with the
tracking performance of the PLL implemented in a GNSS with
an open software interface. This comparison serves to achieve
a correct configuration of the LBCA. Then, the tracking
performance of the PLL using the LBCA is compared with
the traditional PLL.

IV. RESULTS

The GOOSE platform from Fraunhofer IIS is a GNSS
Receiver with an open software interface [19]. Its tracking
stage contains a 3rd order PLL and a 2nd order DLL. In
addition, the PLL assisted DLL (PAD) is enabled. The purpose
is to evaluate the performance of the LBCA implemented
in the PLL of this receiver against simulated scenarios with
different dynamics and noise levels. These simulations use
GPS L1 C/A signals. The tracking correlators use a maximum
integration time Ti of 20 ms.

First, the characterization of the PLL in the GOOSE plat-
form is performed and it is compared with the theoretical
analysis. Finally, the sigmoid-based weighting function is
selected and the performance of the LBCA in a stationary
and a high dynamic scenario is presented.

Fig. 6 shows the setup in which the GOOSE platform
receives synthetic data from a GNSS signal simulator. A
Python script located in the user computer is used to perform
automated tests. The script configures first the scenario of
the GNSS simulator through transmission control protocol
(TCP). Second, the simulator runs and the user computer
accesses the GOOSE platform through secure shell (SSH)
in order to run the tracking application. Then, the GOOSE
platform acquires and tracks the GNSS signal. Finally, the user
computer receives the tracking information from the GOOSE
platform and the data is stored and evaluated.

Fig. 6: Test setup with the signal simulator and receiver
platform

A. PLL Tracking Performance

To evaluate correctly the algorithm, the tracking perfor-
mance of the conventional PLL implemented in GOOSE is
analyzed. The duration of the simulation is 20 minutes. For
a particular PLL loop-bandwidth BPLL, the simulation repeats
for different C/N0 levels. In this case, the simulation repeats
8 times, from 24 dBHz to 52 dBHz with a step size of 4 dB.
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The same method is done for different BPLL values. The loop-
bandwidth of the DLL BDLL remains constant for all the
simulations with a loop-bandwidth of 0.1 Hz.

Since the sensitivity of the acquisition is lower than the
sensitivity of the tracking, the simulation starts always at the
highest C/N0 level, 52 dBHz. The C/N0 level is reduced
4 dB each 30 seconds until reaching the desired level. For
instance, 5 minutes are necessary to reach a C/N0 level of
24 dBHz. Therefore, in order to assure that the measured
tracking performance is reliable, the last 5 minutes of the
simulation are considered.

The CRB at the output of the NCO is the minimum variance
of the smoothed error (3) and determines the performance of
the PLL. However, since it depends on the loop-bandwidth,
it is not a reliable parameter to determine the performance of
the PLL in variable loop-bandwidth tracking techniques. In
addition, since the NCO of the GOOSE platform is imple-
mented in hardware, it is not possible to collect data of the
smoothed error from the software. Therefore, the CRB of the
unsmoothed error CRBuPLL is chosen to evaluate the tracking
performance. In contrast to the CRB of the smoothed error,
CRBuPLL does not depend on the loop-bandwidth (8). More-
over, the unsmoothed error is easily available from software.

Fig. 7 shows the tracking performance of the conventional
3rd order PLL in a static and a dynamic simulated scenario.
For each simulation a five minutes average of the C/N0 is
performed. The standard deviation of the arctangent discrimi-
nator’s output is also calculated. The latter parameter is con-
verted to meters and it indicates the tracking error jitter. These
graphs show the difference between the obtained tracking error
jitter and the square root of CRBuPLL for different C/N0 and
loop-bandwidths. The one-sigma threshold of the unsmoothed
error is also added since it indicates if the tracking is in lock
or not.

In the stationary scenario the GOOSE platform receives
a GPS L1 C/A signal from a visible satellite located near
the zenith. The tracking error difference in this scenario is
presented in Fig. 7a. In this scenario, although the receiver
is static, low signal dynamics are still present due to the
movement of the satellites, the clock jitter, the clock drift and
non-linearities of the receiver’s frontend. Therefore, the static
scenario still has low dynamics present. The real signals have
more degradation than in theory. This is due to the fact that the
theory takes only the thermal noise into account and not other
error sources. Even having an error bias in the obtained results,
the tendency is similar to the theoretical one. The lower the
loop-bandwidth is, the lower the tracking error at low C/N0.
However, at higher C/N0 levels a higher loop-bandwidth is
adequate in order to have minimum tracking error.

The dynamic scenario receives a GPS L1 C/A signal from
a visible satellite located near the horizon. This low-elevation
satellite is more sensitive to receiver dynamics. In this sce-
nario, the receiver is in a vehicle that has a high-dynamic
trajectory. The tracking error difference for this dynamic
scenario is presented in Fig. 7b. Fig. 8 shows the line-of-sight
steady state error dynamics for this scenario. The maximum
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Fig. 7: Tracking error difference of a 3rd order Costas PLL

jerk is ∂3R/∂t3 = 7.8g/s. Setting a PLL loop-bandwidth of
5 Hz and 8 Hz, the tracking loop is not able to follow the
high signal dynamics in any C/N0 level. However, for higher
loop-bandwidths, it is still possible to track the signal. The
obtained results presents a coherent behavior comparing to
the theoretical values.

B. Adaptive PLL Tracking Performance

The LBCA is implemented in the PLL of the GOOSE plat-
form. First, the configuration of the IIR estimators is described.
Then, the parameters of the sigmoid-based weighting function
are selected based on the theoretical normalized dynamics.
Finally, the initial configuration of the GOOSE platform is
indicated and the obtained results are shown.

The estimators for the adaptive phased locked loop (APLL)
uses an IIR filter with a cut-off frequency fco of 5 Hz.
Therefore, the effective exponential moving average of 200 ms
of data is achieved. Hence, α = 0.85 and β = 0.15. This
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Fig. 8: LOS jerk dynamics of high dynamic scenario

IIR filter estimates the mean µuθ [n] and the standard deviation
σuθ [n] of the unsmoothed phase error θu[n].

The sigmoid-based weighting function of the adaptive PLL
gAPLL[n;B] is a linear combination of two sigmoid functions:

gAPLL[n;B[n]] =

[
0.002
0.008

]T [
Sig ((B[n]− 3))

Sig (5(B[n]− 16))

]
(42)

Fig. 9 shows the sigmoid-based weighting function. The
shape of the function is presented in Fig. 9a. This function
is distributed into three regions. The first region, 0− 3Hz, is
the low normalized dynamic region. For a low C/N0 level
and low signal dynamics, the normalized dynamic D̄ tends to
zero. Then, the control signal is always negative (27), the loop-
bandwidth decreases and, in turn, the weighting function tends
to the low normalized dynamic region. The second region is
the transient region, 3−16Hz. The function in this region has
practically a constant value. This value is chosen taking into
account the theoretical optimal normalized dynamics D̄opt

theory

for a PLL (11). D̄opt
theory gives a theoretical value based on the

dynamic stress error and thermal noise. Since it is a 3rd order
PLL, the D̄opt

theory is 1/7. This means that the optimal loop-
bandwidth is located when 14.28% of normalized dynamics
is achieved. It is probable that this value does not give
the optimal normalized real dynamics D̄opt

real , since additional
dynamics and noise sources are not considered. After some
testing and calibration, the value of the D̄opt

real is chosen to
be around 0.18 and 0.2. Then, the optimal loop-bandwidth is
located when 18− 20% of normalized dynamics is achieved.
The third region, 16− 18Hz, is the high normalized dynamic
region. For a high C/N0 level and high signal dynamics, the
normalized dynamic D̄ tends to one. Then, the control signal
is a positive value Eq. (28), the loop-bandwidth increases and,
in turn, the weighting function tends to this region.

The derivative of the sigmoid weighting function in Fig. 9b
indicates how fast the function changes in each region. The
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(a) Normalized sigmoid-based weighting function.
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Fig. 9: Sigmoid-based weighting function for the APLL

higher changes are located between regions and this leads to
constraining the weighting function in the transient region.

Since gMax equals to 0.01, the maximum loop-bandwidth
update is ±0.01 Hz for every integration interval Ti. If the
signal dynamics and noise statistics are estimated without any
uncertainty, a larger gMax would be considered to reach to the
optimum loop-bandwidth as fast as possible. This would also
lead to a higher sensitivity against dynamics. However, the
estimators used are very noisy and a high gMax can lead to
instabilities.

To evaluate the performance of the APLL, the same method
as described for the PLL characterization is followed. The ini-
tial loop-bandwidth of the APLL is 8 Hz and the LBCA starts
when Ti is 20 ms. Fig. 10 shows the tracking performance
of the APLL compared to the traditional PLL in the same
scenarios mentioned previously.

In the low dynamics scenario Fig. 10a, the adaptive LBCA
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Fig. 10: Tracking error difference comparison between PLL
and APLL

achieves the minimum tracking error for each C/N0. However,
in the high dynamics scenario Fig. 10b the algorithm becomes
unstable under 44 dBHz. This is due to a slow response of
the algorithm. The maximum value of the weighting function
gMax is low and consequently less sensitive to react against
high signal dynamics. Another reason is that the estimators are
too slow to detect high dynamic transients. More information
about signal dynamics and noise statistics of the channel can
improve significantly the performance of the algorithm. For
instance, different tracking stages of the tracking loop or the
output of a frequency discriminator can be considered to give
more information to the LBCA.

Fig. 11 shows the effect of gMax. In a stationary scenario
Fig. 11a, a lower gMax leads to a more stable update of
the loop-bandwidth in low C/N0 levels. However, a higher
gMax provides a better tracking performance in high dynamic
scenarios Fig. 11b. A provisional solution is also presented
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Fig. 11: Tracking error difference for different APLL settings

using a signal dynamics detector. It is a threshold detector
that defines if the tracking is getting lost due to high dynamics.
The following conditions are considered:
• C/N0 > 30dBHz
• |θu| − |µuθ | > 2σthθu/3
• |θu| − |σuθ | > σthθu/3

If all the conditions are met, the detector removes one sig-
moid function of the weighting function. Then, the weighting
function becomes:

gDetector[n;B[n]] = Sig (5(B[n]− 16)) (43)

The transient region decreases to zero and gMax is set to one.
Hence, once high signal dynamics are detected, the threshold
detector is activated and the weighting function changes in
order to respond fast against high dynamics.

Fig. 12 shows the variation of the loop-bandwidth for each
configuration of the sigmoid-based weighting function. For
the stationary scenario, the average loop-bandwidth for each
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C/N0 is measured. Fig. 12a shows that a higher gMax presents
a noisier loop-bandwidth as the C/N0 decreases. The signal
dynamics detector stops working correctly at 32 dBHz. At this
C/N0 level, the detector assumes that there is dynamics while
only noise is present. For that reason, this solution is only
enabled for a C/N0 higher than 30 dBHz.

Fig. 12b shows the variation of the loop-bandwidth in
the high dynamic scenario at 45 dBHz. The LBCA responds
slower against high signal dynamics using a low gMax such as
0.01. However, the response is faster increasing gMax to 0.1.
This comes at the cost of a noisier loop-bandwidth update.
The aforementioned provisional solution uses a low gMax and
the signal dynamics detector. If dynamics are detected, the
weighting function is changed in order to respond as fast
as possible. Once the presence of dynamics disappears, the
detector is disabled and the weighting function goes to its
previous state.
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Fig. 12: Loop-bandwidth variation for different APLL settings

V. CONCLUSION

This paper presents an adaptive LBCA for STLs. First, the
description of the STL and its theoretical tracking performance
is necessary to understand the foundation of the algorithm.
Then, a detailed description of the algorithm shows the main
structure, an extension, and a particular case example with
sigmoid-based weighting functions. Finally, the implementa-
tion of the LBCA in a 3rd order PLL proves the stability
and superior performance of the algorithm in a stationary
scenario. Moreover, it also shows the algorithm limitations
in high dynamic scenarios.

In a high dynamic scenario, the algorithm is stable above
40 dBHz. If the maximum value of the sigmoid weighting
function increases, the algorithm can react faster to dynamics,
and the tracking performance increases. However, this comes
at the risk of making unstable the algorithm. A provisional
solution is presented using a switch to detect dynamics. If
the lock is getting lost, the transient region of the weighting
function is decreased, being sensitive against dynamics.

Future research includes adding more information about the
signal dynamics and noise of the tracking channel. The pre-
sented algorithm takes only the statistics of the discriminator’s
output. The statistics of the different stages of the tracking
loop, their respective order of derivatives and integrals can be
considered to add more information. Moreover, in the case of
a PLL, the output of the FLL discriminator can additionally
benefit by adding more information of the signal dynamics.

The LBCA updates the time of response of a traditional
STL. This algorithm can be also applied to update the time
of response in KF-based tracking techniques, reducing signif-
icantly the complexity of the KF.

Optimizing the weighting function could benefit the algo-
rithm’s performance. Regarding the complexity of the algo-
rithm, a sigmoid-based weighting function introduces much
computational burden. However, it can be significantly reduced
using a piece-wise linear approximation [20] [21].

The algorithm presents a good trade-off between simplicity
and performance. Further, current results show promising
adaption capability.
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