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ABSTRACT

Each system using deeply coupling of sensors demands
its own parameterized algorithm regarding geometry, Iner-
tial Measurement Unit (IMU) and e.g. vehicle data. The
present GNSS-receiver market is not flexible enough to
support each application and each special market. Nowa-
days deeply coupling solution is always a fixed combina-
tion of a high performance IMU with a high performance
GNSS receiver. This paper describes a GNSS receiver de-
velopment platform with an open interface to allow deeply
coupling of inertial sensors and vector tracking on user
side.

In this work, two different approaches are adopted for de-
velopment of an open interface for GNSS receiver. First
approach uses standard ZeroMQ library, while in second
case dedicated Application Programming Interface (API)
is developed for external loop closure.

Furthermore, for testing of first approach, three example
implementations are presented along with results and com-
parison with standard tracking loops. Results are presented
for second case and compared with standard tracking loops,
on single-board computer (SBC).

INTRODUCTION

GNSS receivers are used to calculate positions by mea-
suring differential time of arrival of satellite signals in
many different applications and also in harsh environments
for electromagnetic waves. Machine steering (e.g. au-
tonomous driving) demands high availability also in sce-
narios with shadowing and multipath. The idea of vector
tracking is to raise the availability of satellites by bridging
signal outages on some of them exploiting the geometry
and movement of the satellites in the line of sight. With this
procedure more satellites stay in track even if the satellite
signal is shadowed for some time and reacquisition time,
which takes up to several seconds, can be spared. The same
principle is used by deep coupling of sensor information.
The position estimation is fed back into the receiver and
aids the tracking loops to stay in track even if the signal to
all satellites is lost.

For deep coupling commercial hardware solutions can be
found which are based on one professional multi-frequency
GNSS-receiver [1]. In the referenced paper the receiver
is used with a combination of a commercial grade fiber
optical gyro (FOG) and a microelectromechanical systems
(MEMS)-based accelerometer building up the IMU. The
positions and carrier-phases of GPS are used to update the
Inertial Navigation System (INS)-filter which is a so called
tight coupling. In the other direction the inertial position
and velocity is used to assist the tracking loops in a deep
coupling. About half a dozen IMUs are ready to support

the described receiver. Other IMU or sensor data accept
wheel speed are not supported. This and the costs restricts
the useful application scenarios.

Beside this there is a lot of research activity in the field of
vector tracking [2,[3]] and deep coupling [4]. In some ap-
proaches of the shelf signal recorder like the Ettus USRP
N210 are used as a front end and the processing is done
completely in post-processing. In other setups an off-the-
shelf front-end for digitizing the satellite signals in combi-
nation with a high performance personal computer is used,
running MATLAB®, Python™ or C++ executables.

In this paper we employ for this purpose the GNSS-receiver
platform developed by Fraunhofer IIS in the GOOSE
project (see [5] and [[6]]). The platform is characterized by
three separate components: an analog-front end board, a
baseband board and the processor system. The low-IF sig-
nals generated by the analog front end are processed in the
baseband board. The baseband board is based on a FPGA,
where different GNSS dedicated HW modules are imple-
mented. These include a FFT-based acquisition core and 60
flexible data-pilot channels. The FPGA modules are con-
trolled by the processor system, which can read and write
the control and status registers. Additionally it is also pos-
sible to close the FLL/PLL/DLL loops in the tracking, i.e.,
reading the E/P/L values and writing back the carrier and
code NCO control values. The PCle interface has been em-
ployed for this purpose.

The GNSS-receiver platform has been designed in order to
support both the deployment in a commercial PC as well as
an embedded platform. In the PC version, a PCle riser card
allows to plug the receiver platform in the PCle connector
of a motherboard. For the embedded version, a SBC can be
directly plugged-in in the baseband board.

This paper is organized as follows. Firstly we present the
GNSS-receiver development chain based on the GOOSE
platform. Then we describe the open interface, which can
be used to collect measurements from the receiver as well
as to close the tracking loops. Afterwards we describe how
a deep coupling algorithm could be mapped on the plat-
form. It follows the current implementation of vector track-
ing loops and related results. Finally we draw some conclu-
sions.

GNSS-RECEIVER DEVELOPMENT CHAIN

In order to allow the users to develop new algorithms,
methods and applications in the GNSS field, we provide
with the Open-GNSS receiver a complete development
chain which is presented in the following figures.

Each stage of the chain is characterized by a different
run-time environment and debugging possibilities, but it
has a common Hardware Abstraction Layer (HAL) and
open software interface (Open GNSS Receiver Protocol
(OGRP)), depicted as central elements in figures and
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[l The user can develop his/her software in different lan-
guages and communicate with the HAL through the open
interface, described in Section [I2} Because of the com-
mon interface, it is easier to port user software from one
development stage to next one.

Software-defined radio receiver

The first stage of the development chain corresponds
to software-defined radio (SDR)-receiver implemented in
C++ shown in figure (1] This models the signal condition-
ing, acquisition and channel modules which are typically
built in hardware. The input signal is parsed from a binary
file which contains either a synthetic signal, generated e.g.
with MATLAB® like in ﬁgure, or recorded data with the
help of the Open GNSS-Receiver (see figure[3). The main
advantage of the SDR approach is that processing intensive
algorithms can be implemented and analyzed as the system
does post-processing on sampled files in a simulated time
frame. Moreover breakpoints can be set for debugging pur-
poses. With this complex functions can be monitored and
validated which would not be possible in a real-time envi-
ronment.

The combination of SDR plus the hardware abstraction
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Figure 3. Recording of GNSS-signals with Open-GNSS Receiver
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Figure 4. Data processing with Open-GNSS Receiver

layer (HAL) and the user software allows the user to track
the synthetic signal and to calculate a PVT out of it. The
user software can be implemented either in MATLAB®,
Python™ or C++ without any hard real-time constraints.
In particular, MATLAB® debugging with breakpoints has
already been validated.

Hardware Receiver with PCle playback input

The next stage of the development chain is based on the
Open-GNSS Receiver developed in GOOSE project ( [3],
[6]). In this stage the baseband HW receives the digi-
tal signal through the PCle interface instead of the analog-
front end (see figure ). The PCle interface is also used to
access the control register and perform the loop closure.
By using the acquisition core mapped on the FPGA, it is
possible to detect the presence of a satellite, its Doppler and
code phase. The detected signal can be processed in one of
the available channels. Each channel can track any of the
signals supported by the front-end. For L2C signal an ad-
ditional time-multiplexed mode has been implemented to
allow the separate tracking of data and pilot components.
Regarding AItBOC signals, a dedicated subchip generator
produces the sine and cosine subcarriers needed for their
tracking.

Differently from the SDR receiver, in this case the signal
is processed in real-time. The advantage for the users is
that they can use the same test signals as in the previous
step to have a reference behavior and reproducible results
for easier debugging. In addition, it is possible to analyze
how the user algorithm performs in a constrained real-time
environment and what performance can be expected.

Hardware Receiver with analog front-end

In this third step of the development chain, the Open-GNSS
Receiver gets its input signal from a analog-front end board
(see figure[5).

The analog-front end is composed of three channels for
separate GNSS bands. In each channel, the satellite signal
is mixed down to a low intermediate frequency and con-
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Figure 5. Schematic of Smart Antenna build up with Open-
GNSS Receiver

verted to digital by a 81-Msps 8-bit ADC. The first channel
supports GPS L1, Galileo E1, GLONASS G1 and BeiDou
B1, the second one the L2/L.2C-band and GLONASS G2
and the third one E5 AItBOC, E5a, E5b, L5 and B2.

This development step is characterized by different hard-
ware versions which allow to extend the development
chain. In the first version, the receiver is plugged into
a PC. The user can develop its software by processing a
real signal coming from the antenna, but using exactly the
same development environment as before. In the embed-
ded version, the baseband board is connected to a single-
board computer instead of the PC through the same PCle
interface. In this case, the user is challenged by additional
performance constraints related to the embedded proces-
sor. Finally, the smart antenna version provides a portable
receiver. The user can finalize the software with field tests.

Figure 6. Smart Antenna build up with Open-GNSS Receiver

PROVIDED OPEN INTERFACE

In order to modify the conventional tracking loops of GNSS
receiver program at tracking loops level, in an external en-
vironment, an open interface needs to be defined and devel-
oped, via which the receiver platform communicate/inter-
acts with external environment and vice versa. This ap-
proach enables users to perform different techniques for
loop closure, i.e. deeply coupling with IMU or vector
tracking etc.. In addition, a comparative study and perfor-
mance improvements scope in two cases, those are, con-
ventional loops closure and loops closure with an open in-
terface can also be performed. Based on the application re-
quirements, two different strategies are adopted and tested,
for the development of an open interface.

1) Open Interface via ZeroMQ:

ZeroMQ is a distributed-messaging library for inter-
process communication which is available for the most
common programming languages (C++, Python™, Java,
etc.) and operating systems. It provides sockets that carry
atomic messages using different transport protocols and
communication patterns. The most common transport pro-
tocols are supported, among the others TCP, inter-process,
in-process or multicast. The available patterns include
request-reply, publisher-subscriber, push-pull and fan-out.
The proposed interface is used in order to provide a generic
which is flexible for future applications and needs. The ad-
vantage of this interface is the flexibility for the user. Ad-
ditionally a ZeroMQ to MATLAB® module (MEX) is pro-
vided. Already implemented algorithms in many program-
ming languages and MATLAB® can be tested. The dis-
advantage is the performance lose because of inter-process
communication over the TCP layer on the SBC. Therefore
a second interface option is provided for mobile applica-
tions on the SBC.

In order to take the benefits of this approach, three ex-
ample implementations are presented in different program-
ming languages, for external loop closure. In first case, ex-
ternal program is written in Python™ to close the loops,
second example shows loops closure via open interface
using C++ and for third case MATLAB® is used as an
external environment. First two examples are real time,
while MATLAB® is used in connection with SDR for de-
velopment of vector tracking and deep coupling applica-
tions. Results are provided for each case, which shows
good agreement of tracking performance.

2) APl in C++:

This approach is adopted if the receiver program and ex-
ternal program needs to be run on SBC, for which first ap-
proach does not meet requirements because of the library
and parsing overheads.

The OGRP is associated with the GNSS receiver platform
described above. OGRP is an open interface protocol avail-
able at [7]] and is foreseen to be extended and used by the
GNSS-community. The goal of OGRP is to offer a well-
defined and self-describing format for the available receiver



measurements, while to be vendor neutral at the same time.
One of the challenges of the protocol is to support real-
time message exchange between software modules as well
as logging of the internal receiver status and measurements.
To fulfill these requirements and to guarantee at the same
time a human readable format, JavaScript Object Nota-
tion (JSON) has been used to implement the protocol. This
way several libraries based on different programming lan-
guages can be used to parse the data. The usage of JSON
simplifies the protocol extension through definition of new
message types or extension of the defined ones.
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Figure 7. Concept of interfacing the external tracking

For deeply coupling the OGRP definition is extended by
eight new messages:

1. Integrate & Dump (I&D) values from the hardware
channels

2. Increment values for Code and carrier numerical
controlled oscillator (NCO) to control the hardware
channels by an external tracking

3. Acceleration and angular rate from IMUs
4. Wheel rotation speed and steering angle from vehicle

5. Ephemeris data from receiver platform to compute
satellite position, velocity and clock information

6. User PVT result from receiver platform
7. Channel measurements from receiver platform

8. Satellite information from receiver platform contain-
ing satellite’s azimuth, direction and elevation etc.

The concept of steering the channels by an external track-
ing is shown in figure Each channel is started using
the internal tracking. If a stable tracking state is reached
a flag is set and the NCO values of the internal tracking
are ignored, while the channel is steered by the IMU aided
external tracking. The latter does not have to consider bit
synchronization and integration time switching e.g. for
GPS L1CA as this is already done before by the internal

tracking. This reduces the effort to implement an aided
external tracking. The internal tracking runs in background
without steering the hardware channel, observes the
tracking state and passes the navigation bits to the message
decoder.

DEEP COUPLING AND VECTOR TRACKING
DEVELOPMENT ENVIRONMENT

As described above a post-processing environment is useful
for the development of vector tracking or a deep coupling
filter for loop closure. This is provided in the first stage
of the development chain. The Figure [ shows the compo-
nents used to close the loops on the one hand without using
IMU (vector tracking) on the other hand with IMU (deep
coupling). The "IMU to ZMQ’ component takes an IMU
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Figure 8. Development framework for loop closure

log file (e.g. generated by Spirent), converts each entry into
an OGRP message and sends it via ZeroMQ. Another com-
ponent (Sync GNSS and IMU) takes the GNSS data stream
(I&D) as well as the IMU data stream (acceleration and an-
gular rate) to synchronize to each other. Synchronization is
done via a sample counter and sampling rate on GNSS side
and via a time-stamps on IMU side. Synchronization has to
be performed at the beginning of both the recorded GNSS
data and the IMU data. At external loop implementation it
is then possible to choose between the GNSS only and the
synchronized (GNSS and IMU) stream. The NCO values
will be send back in both cases via ZeroMQ.



The SDR-receiver environment helps developing vector
tracking or deep coupling since the SDR waits until a NCO
message is received to send the next I&D message. Also
the synchronization component will wait for an I&D mes-
sage to synchronize it with IMU data. Result generation,
breakpoints, plotting of data or modifying of variables is
possible at any time in execution of the external tracking
loop. After development in MATLAB® the code can be
ported to C++ or Python™ and easily be verified as the
same ZeroMQ interface can be used. Afterwards it can be
tested in an real-time environment.

EXAMPLE VECTOR TRACKING
IMPLEMENTATION

A common way to improve the robustness and/or the pre-
cision of the GNSS position estimation is to use a coupled
receiver or vector tracking. Typical issues with pure GNSS
positioning are false signals or signal outages (e.g. multi-
path propagation or shadowing).

Deep coupling augments the GNSS tracking loops with the
directional vector from an inertial navigation system (INS)
to keep the tracking loops locked also in harsh environ-
ment. But also other information may be incorporated,
e.g. vehicle specific data like wheel rotation speed or the
steering angle. The coupling algorithm calculates its own
corrections and controls the loops to stay locked with the
GNSS signals, even if the reception of this signals is dis-
turbed.

Mass-market as well as specialized GNSS receivers (e.g.
in aerospace or defense systems) are black boxes and inso-
far do not allow to intervene in their tracking loops control.
Therefore there is no possibility to get a custom deeply cou-
pled or a vector tracking system working with such com-
mercial receivers.

Presently, the required IMUs for deeply coupling are still
somewhat expensive, since they need to be at least within
the tactical grade class. However since these kinds of sen-
sors are also increasingly available as MEMS, costs are
dropping as well as the housings are getting slimmer.

The open interface with an open receiver enables such sen-
sors and own customized algorithms to be used and opens
therefore a complete new market. In the following, one ex-
ample implementation of vector tracking (see figure [J) is
described.

As depicted in the architecture concept above, the conven-
tional scalar nature of code tracking loops is replaced by
Vector Delay Lock Loop (VDLL). The navigation solution
obtained from all channels is feedback to each of them.
Thus weak ones benefit from strong ones [8|]. Our navi-
gation processor is based on a Kalman filter having eight
states, which include errors of user’s position ((5[3; L), ve-
locity (6¥¢ ;). clock bias (6¢f) and drift (6¢4) at time epoch
k. Earth Centered Earth Fixed (ECEF) coordinate system
has been used as shown by subscript e. Initially these errors
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Figure 9. Architecture concept of vector tracking

are taken as zero. The estimated error states of the filter are
used to correct the nominal states which correspond to the
navigation solution. After every subsequent correction the
error states are reset to zero. The nominal state vector and
error state vector are given as

~Q ~
pe,k 5pe,k,
v v
Xp= | G 0Xp = | st (1)
k k
& 68
k 8x1 k 8x1

The receiver starts with standard tracking running with the
internal software until a stable state is reached. At this point
it switches to the external tracking loops. The loops are ini-
tially closed using scalar tracking allowing us to get a po-
sition, velocity and time component (PVT) solution which
is used to initialize the nominal states of the Kalman filter.
In this approach a non coherent architecture is used, which
means that the navigation filter uses the discriminator out-
puts of the correlation values as an input to update the nav-
igation solution. When the Kalman filter has reached a sta-
ble state, the navigation solution of the filter is used to close
the code NCO loops, by computing the new code Doppler.

In this approach the inherent relationship between the code
phase discriminator output and the user position and clock
bias is used. It can be represented in mathematical form as:

028, = (g )TOPL g, + 8¢ + w?y (2)

)

where, 62}‘?k is the estimated code phase error in meters,
ﬁzsj 1 shows the unit line of sight vector from the the user



to the j-th satellite and w, represents the white Gaussian
noise errors. So the system measurement model can be rep-
resented as

5% ~as T
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For the code phase error, we employ a normalized Delay
Locked Loop (DLL) discriminator stated as
E—-L
‘E+L

VIE+Q3 - VIE+ 03
2VIE+ QR+ VIE+ QL

s _
5zj =

| = N =

“4)

where 927 is the measured code phase error; Ig, Ip and
Iy, represent sum of the in-phase Early, Prompt and Late
correlator outputs respectively between time epoch & — 1
and k; Qg, Qp Q represent the sum of quadrature Early,
Prompt and Late correlation results between & — 1 and &
epoch.

The code NCO command for the jth signal is

~a _ na
e R L i N 5)
NCOk+1,j — o ;o (

where p% 1.1 ;_ and pf ;. ;. represents the pseudo-ranges
for epoch k+1 and k, 7, is the NCO command update in-
terval [9].

RESULTS

The provided open GNSS receiver interface and the de-
veloped algorithms were tested with synthetic data created
from the Spirent simulator [[10]. The Spirent® GNSS signal
generator connected to the Flexiband [[11], creates a binary
file which can be processed by the SDR. As a first step
of the development chain, the proposed VDLL algorithm
is implemented in MATLAB® and subsequently external
loop closure via ZeroMQ is performed. In order to keep
the complexity of a first test as low as possible, a station-
ary scenario without atmospheric errors was used. Further-
more, the receiver clock drift was removed by using the
same clock for Spirent and Flexiband. In this way, the
user’s position, velocity and clock drift are known at any
time, which simplifies the evaluation of the interface and
the developed algorithm.

As an example, figure [I0] shows the computed code
Doppler frequency which was sent back to the SDR for
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Figure 10. Computed Doppler frequency of code tracking loop

closing the code tracking loop. The duration of the scenario
is 90 seconds in total. During the first 45 seconds, the code
and carrier tracking loops are closed by scalar tracking until
a PVT solution and the ephemeris data for all satellites in
view are available. Then the Kalman filter based navigation
processor is initialized and the external tracking switches
from scalar to PVT tracking (VDLL). This means that the
PVT solution is used together with the satellite position to
compute the code Doppler frequency. The carrier tracking
loops are still closed by scalar tracking. As long as VDLL
is used, tracking loops are in lock, giving a good indica-
tion of the implemented approach. In addition, the code
Doppler frequency computed by VDLL is approximately
equivalent to the mean of the frequency that is computed
by a scalar tracking.
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Figure 11. Computed Doppler frequency of carrier tracking loop

As mentioned earlier, the carrier tracking loops are still
closed by scalar tracking. At the moment, work is in
progress to extend the existing algorithm for the com-
putation of carrier Doppler frequency. Figure [IT] shows
the results of the computed carrier Doppler frequency and
its comparison with the mean of its counter scalar track-
ing, showing a good approximation as it was the case for
VDLL. Nevertheless, further investigations are necessary
to extend the VDLL to a long-term stable Vector Delay and
Frequency Lock Loop (VDFLL).

CONCLUSION

With this approach an innovative GNSS receiver with an
open access to the receiver core - the tracking loops - is



presented. This provides the GNSS community a possibil-
ity to integrate all kind of relative positioning sensors like
INS, wheel rotation speed sensors, laser scanners, cameras
and so on with user customized deeply coupling and vector
tracking solutions.

A new market is developed where deeply coupling and vec-
tor tracking enables a high performance and more robust
position solution also in harsh environment. Furthermore
it opens a new research area for Small and Medium-Sized
Enterprise (SME)s, universities and research institutes and
makes the application market more independent from the
receiver manufacturers.

The functionality of the provided open GNSS receiver
interface and the MATLAB® VDLL implementation was
tested successfully with synthetic data. As a next step we
want to extend the VDLL to a VDFLL and use measure-
ments from IMU to develop a deeply coupled GNSS/IMU
algorithm.

EXECUTIVE SUMMARY

We present a versatile hardware assisted software receiver
with an open interface enabling user customized deeply
coupling and vector tracking solution.
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