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Abstract— This paper analyzes the performance and com-
plexity of state-of-the-art adaptive scalar tracking techniques
used in modern digital global navigation satellite system (GNSS)
receivers. Ideally, a tracking channel should be able to adjust to
both noisy and dynamic environments for optimal performance.
Precision and robustness define the performance of the tracking.
The difference between the square root of the Cramér-Rao bound
(CRB) and the average tracking jitter at the discriminator’s
output determines the precision of the tracking, whereas the
speed of the response specifies the robustness of the tracking in
high dynamic scenarios. The amount of operations required to
implement a robust tracking technique indicates the complexity
of the algorithm. The fast adaptive bandwidth, the fuzzy logic,
and the loop-bandwidth control algorithm adaptive tracking
techniques are first analyzed and evaluated in a software receiver.
Second, these techniques are implemented in an open software
interface GNSS hardware receiver for testing in simulated scenar-
ios with real-world conditions. The scenarios represent different
dynamics and noise cases. The results show the loop-bandwidth
control algorithm’s advantage over adaptive loop-bandwidth
techniques while preserving good tracking performance and low
complexity.

Index Terms—Global navigation satellite system (GNSS), adap-
tive scalar tracking loop (A-STL), fast adaptive bandwidth (FAB),
fuzzy logic, loop-bandwidth control algorithm (LBCA).

I. INTRODUCTION

In global navigation satellite system (GNSS) receivers, it
is necessary to maintain the lock onto the satellite signals
in order to decode the navigation message and determine the
pseudo-range to a given satellite [1]. Locking onto the signal is
referred to as tracking. A GNSS receiver must utilize the best
possible means to track the signals, since it leads to a better
pseudo-range estimation, and in turn, to a more precise and
reliable position, velocity, and time (PVT) solution. However,
noise, receiver dynamics, and multipath effects make this a
challenging task.

A scalar tracking loop (STL) handles the tracking of each
received GNSS signal fully independently. It synchronizes to
the carrier frequency (frequency locked loop (FLL)), carrier
phase (phase locked loop (PLL)) and code phase (delay
locked loop (DLL)). The tracking loop consists of a correlator,
a discriminator, a loop filter, and a numerically controlled
oscillator (NCO) [2]. The integration time Ti, the correla-

tor spacing, the discriminator type, the order and the noise
bandwidth of the loop filter, and the oscillator determine the
tracking performance at a given carrier-to-noise density ratio
(C/N0). Depending on the scenario, different loop settings are
appropriate.

Conventional STLs present a trade-off between the ability
to stay locked in the presence of dynamics and the amount of
filtered noise to achieve better precision. Dynamics stress the
tracking loop, whereas noise reduces the tracking performance.
The former is characterized by changes in position, velocity,
acceleration, jerk, or even higher orders of change, and the
latter arises due to the thermal noise, the oscillator phase noise,
and other noise sources. The precision of the tracking, the
dynamics, and the capability to stay in lock depend on the
loop type, the loop order, the integration time and the loop
bandwidth.

Variable loop-bandwidth tracking techniques give a solution
to this problem by adapting the loop-bandwidth of the STL
depending on the scenario conditions [3]–[7]. This paper
evaluates the performance and complexity of different state-
of-the-art variable loop-bandwidth tracking techniques. First,
Section II presents background on STL, followed with a de-
tailed description of the implemented variable loop-bandwidth
tracking techniques in Section III. Section IV presents the
results of the implemented techniques in an open software
interface GNSS hardware receiver. Finally, Section V draws
conclusions and indicates future work.

II. SCALAR TRACKING LOOP

This section presents an introduction to standard STLs.
Fig. 1 shows the general model of an STL. The output of the
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detector is the error signal θu[n] which is the difference be-
tween the incoming signal y[n; θ[n]] and its replica y[n; θs[n]].
The loop filter suppresses the noisy errors θu[n] to a smoothed
error rate θ̇[n]. Hence, the filter input is referred to as an
unsmoothed signal and the filter output as a smoothed one. The
loop-bandwidth affects the time of response of the loop-filter.
Noise-suppressing tracking needs smaller loop-bandwidths,
whereas larger loop bandwidths are required to react faster
against signal dynamics. The order of the loop determines
the robustness of the tracking against high-order dynamics.
A higher order means the possibility to track higher-order
components of the error signal, while adding more complexity
in the system. The resulting smoothed error rate θ̇[n] drives the
NCO. The NCO sends the smoothed error θs[n] to the replica
generator. The generated replica signal y[n; θs[n]] approaches
y[n; θ[n]] such that θu[n] is minimized.

Fig. 2 presents the general structure of the detector. The
mentioned unsmoothed error signal θu[n] is the output of a
discriminator block. This block extracts the error from a vector
of input data. For instance, a phase discriminator measures the
phase between the prompt in-phase and quadrature-phase (IQ)
values of the received signal. Before the discriminator block,
the signal is passed through an integration and dump (IAD)
module in order to sample and integrate the signal.

Fig. 2: Architecture of the detector

The integration time Ti reduces proportionally the noise
of the input data to the discriminator. A larger integration
time Ti achieves more processing gain, resulting in less noisy
errors θu[n]. However, the loop response becomes slower,
and consequently, less sensitive against signal dynamics. The
product between the loop-bandwidth and the integration time
Ti sets the response time of the STL.

III. VARIABLE LOOP BANDWIDTH TRACKING
TECHNIQUES

Variable loop-bandwidth tracking techniques set a connec-
tion between the loop-bandwidth and time-varying scenario
conditions. In dynamic scenarios, a fast loop response with
a large loop-bandwidth is preferred in order to follow the
dynamics, whereas in stationary scenarios a noise-rejecting
low bandwidth is appropriate. This category adapts the loop-
bandwidth depending on the noise and signal dynamics of
the tracking channel. Two techniques from this category are
presented below.

A. Fast Adaptive Bandwidth
The fast adaptive bandwidth (FAB) tracking technique esti-

mates permanently the input signal parameters (thermal noise,

phase noise or steady state error (SSE)) of the STL using
accurate models [8]. The combination of these models creates
a loop-bandwidth dependent cost function c[n;B[n]]]. Setting
the first derivative of the cost function to zero with respect to
the loop-bandwidth B[n], leads to an estimated optimal loop-
bandwidth Bopt:

∂c[n;B[n]]

∂B[n]
= 0→ Bopt (1)

The algorithm updates the current loop-bandwidth. The three-
sigma rule-of-thumb of the tracking loop error is a common
cost function [9]. The noisy output of the discriminator makes
it difficult to measure the SSE correctly (even more for
higher order loops). One solution is to accumulate the noisy
measurements for a large interval [3] or to implement a
dynamic error filter [4]. Since the poles of the loop filter are
directly related to the loop-bandwidth, a cost function can be
used to estimate the optimum pole of the loop filter [5]. An
abrupt change of the estimated optimal loop-bandwidth Bopt
may create tracking instabilities. Therefore, different solutions
are required. An empirical scaling factor for the dynamic stress
estimator and a constrained loop-bandwidth can solve this
problem [4]. Another solution is to smooth the loop-bandwidth
update using the Newton-Raphson method and a low pass filter
(LPF) [5].

This paper presents a three-sigma rule-of-thumb based FAB.
Fig. 3 shows the structure of this method. The cost function
of the presented FAB algorithm is the jitter of the smoothed
error σsθ:

σsθ[n;B[n]] = σsthermal[n;B[n]] +
θsse[n;B[n]]

3
(2)

where σsthermal is the thermal noise and θsse is the dynamic
stress error.

Since σsθ is loop-bandwidth dependent, the first order deriva-
tive of σsθ regarding the loop-bandwidth can be performed. By
equaling the derivative to zero, the calculated optimal loop-
bandwidth Bopt for a 3rd order Costas PLL is [9]:

Bopt = 7

√√√√√ (
2η3 ∂3R

∂t3

)2
1

C/No

(
1 + 1

2TiC/No

) (
360
2π

)2 (3)

Bopt is dependent on the C/N0, the integration time Ti and
the line-of-sight (LOS) jerk dynamics ∂3R

∂t3 . The constant η
is the relation coefficient between the noise loop-bandwidth
and the natural frequency of the tracking loop. For a 3rd order
PLL, η equals to 0.7845.

The integration time Ti is selected to have a constant value
of 20 ms. The C/N0 estimator updates each tracking epoch.
The dynamic stress estimator filters first the discriminator’s
output. The filter is a first order infinite impulse response (IIR)
with a cut-off frequency fco of 1 Hz. Therefore, an effective
exponential moving average of 1 s of data is achieved. Second,
it performs the third derivative of the filtered discriminator’s
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Fig. 3: Architecture of the 3-sigma rule-of-thumb based FAB

output µuθ in order to achieve an estimated jerk measurement
θ̂sse:

θ̂sse[n] =
µuθ [n]− 3µuθ [n− 1] + 3µuθ [n− 2]− µuθ [n− 3]

∆t3
(4)

where ∆t is the time of filtered data by the mentioned first
order IIR filter, 1 s. Since the unsmoothed error is normalized,
θ̂sse is in units of (1/s3). Next, the LOS jerk dynamics ∂3R

∂t3

(deg/s3) is calculated as the following:

∂3R

∂t3
[n] = 360

(
B[n]

η

)3

θ̂sse[n] (5)

Since abrupt loop-bandwidth changes may result in tracking
instabilities, the gradient descent method and a first order
IIR filter is used to smooth the update. The gradient descent
method updates the actual loop-bandwidth B[n] gradually:

BGD[n] = B[n] + Ti
Bopt[n]−B[n]

|∆Bopt[n]|
(6)

where ∆Bopt[n] is,

∆Bopt[n] = Bopt[n− 1]−Bopt[n] (7)

The updated loop-bandwidth BGD[n] depends on the actual
loop-bandwidth B[n], the estimated optimum loop-bandwidth
Bopt[n] and the previous estimated loop-bandwidth Bopt[n−1].
To avoid instabilities, |∆Bopt[n]| is hard set to the integration
time Ti if it is less than the latter.

Next, a LPF smooths BGD[n], achieving BsGD[n]. Finally, the
filtered loop-bandwidth is passed through a threshold limiter:

B[n+ 1] =


18 ifBsGD[n] > 18

BsGD[n] if 4 ≥ BsGD[n] ≤ 18

4 ifBsGD[n] < 4

(8)

A number of conclusions of the FAB implementation can be
drawn before showing the results in the next section. First, the
speed of the SSE estimation θ̂sse determines the speed of the
algorithm to react against signal dynamics. Second, the FAB
algorithm does not consider other sources of signal dynamics
such as clock drift and low order transient dynamics. Hence,

in a static scenario the Bopt would tend erroneously to zero
due to the fact that θ̂sse is negligible and other dynamic sources
are not included. Third, the complexity of the algorithm seems
to be significant due to the seventh root in Equation (3) and
the number of divisions to be performed.

B. Fuzzy Logic

Compared to the FAB technique, fuzzy logic based tracking
techniques simplify significantly the complexity of the control
algorithm. The presented fuzzy logic algorithm is based on [7].
Fig. 4 shows the implemented fuzzy logic algorithm structure.
The standard deviation σuθ and the absolute mean |µuθ | of the
discriminator’s output are the inputs for this algorithm. The
normalization stage normalizes the estimated noise N̄ and the
estimated dynamics D̄:

N̄ =
σuθ

σuθ + |µuθ |
(9)

D̄ =
|µuθ |

σuθ + |µuθ |
(10)

Next, the zero fZO, the positive-small fPS and the positive-
large fPL fuzzy functions weight each normalized estimation.
These fuzzy functions are characterized as follows:

fZO[n;ψ[n]] =


Tψfuzzy−ψ[n]

Tψfuzzy

if 0 ≤ ψ[n] ≤ Tψfuzzy

0 otherwise
(11)

fPS[n;ψ[n]] =


ψ[n]

Tψfuzzy

if 0 ≤ ψ[n] ≤ Tψfuzzy

1−ψ[n]

1−Tψfuzzy

if Tψfuzzy ≤ ψ[n] ≤ 1

0 otherwise

(12)

fPL[n;ψ[n]] =


ψ[n]−Tψfuzzy

1−Tψfuzzy

if Tψfuzzy ≤ ψ[n] ≤ 1

0 otherwise
(13)

ψ[n] is the input estimation (N̄ or D̄) and Tψfuzzy is the
function threshold that defines the regions of these three fuzzy
functions. The function threshold of D̄ and N̄ are:

T D̄fuzzy = Dopt (14)
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Fig. 4: Architecture of implemented fuzzy logic technique

T N̄fuzzy = 1− T D̄fuzzy (15)

where Dopt is the optimal normalized dynamics in order to
achieve best tracking performance. The three-sigma rule-of-
thumb is considered to determine this parameter. For a 3rd

order PLL the optimal normalized dynamics Dopt is 1/7 [10].
Fig. 5 shows the fuzzy functions for D̄ and N̄ . An interesting
remark is the symmetry between the weighted estimates since
D̄ = 1− N̄ :

fZO[n; D̄[n]] = fPL[n; N̄ [n]] (16)

fPS[n; D̄[n]] = fPS[n; N̄ [n]] (17)

fPL[n; D̄[n]] = fZO[n; N̄ [n]] (18)
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Fig. 5: Fuzzy functions for normalized estimates D̄ and N̄

The fuzzy-weighted estimates are combined together with
a weighting fuzzy matrix W fuzzy

3×3 :

P [n] =

3∑
i=1

3∑
j=1

f i[n; N̄ [n]]f j [n; D̄[n]]W fuzzy
i,j (19)

where f1, f2 and f3 are fZ0, fPS and fPL, respectively.
Table I shows the values of W fuzzy

3×3 that are empirically set.

D̄

ZO PS PL

N̄

ZO 0 0.5 0.75
PS -0.25 0 0.5
PL -0.5 -0.25 0

TABLE I: Values of the fuzzy Matrix W fuzzy
3×3

The resultant value P [n] is scaled by S and multiplied by
the current loop-bandwidth B[n], achieving the final control
signal c[n]:

c[n;P [n];B[n]] = P [n]SB[n] (20)

Finally, the loop-bandwidth is updated:

B[n+ 1] = B[n] + c[n;P [n];B[n]] (21)

Two examples are addressed. If the normalized dynamics D̄
tends to zero, the normalized noise N̄ goes to one. Therefore,
fZO[n; D̄[n]] and fPL[n; N̄ [n]] tend to one and the remain
fuzzy functions are zero. Then, P [n] results as:

P [n] = W fuzzy
3,1 = −0.5 (22)

The updated loop-bandwidth B[n + 1] decreases each it-
eration since the control signal is always negative. Due to
the loop-bandwidth decrease, the control signal c[n] also
decreases. After some iterations, B[n] and c[n] tend to zero.
This proves the lower bound stability of the algorithm.

In the opposite case, if D̄ tends to one, the normalized
noise N̄ goes to zero. In such a case, P [n] = 0.75 and the
loop-bandwidth increases together with the control signal. The
bigger the loop-bandwidth, the bigger the update. This can lead
to instabilities due to abrupt changes of the loop-bandwidth.
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Fig. 6: Architecture of loop-bandwidth control algorithm (LBCA)

C. Loop-Bandwidth Control Algorithm

Similar to the fuzzy logic method, the LBCA [10] uses
the discriminator’s statistics to adapt the loop-bandwidth.
However, it uses a loop-bandwidth dependent sigmoid-based
weighting function to combine these values. Fig. 6 shows the
structure of the LBCA.

The inputs of the algorithm are the absolute values of the
mean and the standard deviation estimates of the discrimina-
tor’s output. The former is interpreted as the dynamics and the
latter as the noise of the tracking channel. The signal dynamic
estimate is normalized D̄. Next, D̄ is scaled by the maximum
value of the weighting function gMax and it is combined with
the weighting function g[n;B]. The weighting function is
a linear combination of sigmoid functions and it is shaped
considering the mentioned optimal normalized dynamics Dopt.
Finally, the difference between the estimated weighted dynam-
ics and the estimated weighted noise is performed, achieving
the update that is added to the current loop-bandwidth. The
control value c[n;B[n]] used is:

c[n;B[n]] = 0.01 ·D̄−

[
0.002

0.008

]T [
Sig ((B[n]− 3))

Sig (5(B[n]− 16))

]
(23)

IV. EXPERIMENT AND RESULTS

The GOOSE platform from Fraunhofer IIS is a GNSS
receiver with an open software interface [11]. The tracking
stage is partially implemented in hardware and software.
The correlators and the NCOs are implemented in a field-
programmable gate array (FPGA), whereas the software part
includes the discriminators, the loop filters and the adaptive
tracking algorithms. Each tracking channel contains a 2nd order
FLL, a 3rd order Costas PLL and a 2nd order DLL with PLL
assisted DLL (PAD) enabled. The FLL is first enabled in order
to track and refine the acquired Doppler frequency. Once a sta-
ble lock is achieved, the transition to the PLL is done, passing
through a FLL assisted PLL (FAP). The purpose is to evaluate
the performance and the complexity of each variable loop-
bandwidth tracking technique implemented in the PLL of this
receiver against simulated scenarios with different dynamics

and noise levels. These simulations use GPS L1 C/A signals
and the integration time Ti is 20 ms. The test set-up is the
same as with previous studies [10], where a Spirent GSS9000
radio-frequency constellation simulator (RFCS) is used to
generate controlled scenarios. These scenarios are either static
or have receiver dynamics. The duration of the simulation is 20
minutes and the simulation repeats for different C/N0 levels.
In this case, the simulation repeats 8 times, from 24 dBHz
to 52 dBHz with a step size of 4 dB. The loop-bandwidth of
the DLL BDLL remains constant for all the simulations with a
loop-bandwidth of 0.1 Hz.

Since the sensitivity of the acquisition is lower than the
sensitivity of the tracking, the simulation starts always at the
highest C/N0 level, 52 dBHz. Then, each 30 seconds the
C/N0 level is reduced 4 dB until reaching the desired level.
For instance, 3.5 minutes are necessary to reach a C/N0 level
of 24 dBHz. Therefore, in order to assure that the measured
tracking performance is reliable, the last 16 minutes of the
simulation are considered.

A. Performance of Variable Loop-Bandwidth Tracking Tech-
niques

In order to define the quality factor to determine the tracking
performance of an adaptive tracking technique, two parameters
are considered: the Cramér-Rao bound (CRB) and the one-
sigma rule threshold of the unsmoothed error σthθu . The CRB
indicates the minimum error variance of an unbiased estimator.
Considering the PLL as a time of arrival (ToA) unbiased
estimator [12], the resulting square-root CRB of θu is:

σuLB =

(
λ

2π

)√
1

2TiC/N0

(
1 +

1

2TiC/N0

)
(24)

where λ is the wavelength of the GNSS signal.
From the three-sigma rule of thumb, the jitter of the

smoothed error σsθ must be less than a conservative threshold
in order to ensure an stable tracking [1]. This upper threshold
is also applied to σuθ . Since an arctangent discriminator is used,
the one-sigma rule threshold in meters is:

σthθu =
Ω

12
× λ

2π
=

π

12
× λ

2π
=

λ

24
(25)
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where Ω is the phase pull-in range in radians. The 1/12 factor
in (25) is included because the one-sigma rule threshold is
one-third of the three-sigma rule threshold and one-fourth of
Ω is selected to have a conservative threshold.

The tracking performance in a static scenario is defined
as the difference between the average σuθ and the lower
bound standard deviation σuLB . Fig. 7 shows the tracking
error difference of the FAB and the fuzzy logic techniques
for different C/N0 in a static scenario. The one-sigma rule
threshold σthθu in meters is also included. Values greater than
σthθu mean that the lock of the tracking is likely lost and under
sever cycle slips.

Fig. 7a compares the tracking performance of the FAB and
the sigmoid-based LBCA. As expected, the presented FAB
decreases the bandwidth every epoch, since the estimated jerk
dynamics are negligible. The final loop-bandwidth tends to
4 Hz, because of the threshold limiter. An alternative FAB
is implemented, adding each iteration 4 Hz to the estimated
optimal loop-bandwidth. There is some improvement, but one

25 30 35 40 45 50

10
_
3

10
_
2

     Lock Lost

(a) FAB technique

25 30 35 40 45 50

10
_
3

10
_
2

Lock Lost Lock Lost

(b) Fuzzy logic technique with S = 0.01

Fig. 7: Comparison of the tracking error difference in static
scenario for different tracking techniques

can observe in Figure 8a that the loop-bandwidth has almost
a constant value of 7 Hz. Therefore, bad results of the FAB
are achieved.

The interesting part comes in the comparison between
the fuzzy logic and the LBCA. Fig. 7b shows the tracking
performance of both algorithms. This graph includes three
fuzzy logic configurations with different function thresholds
T D̄fuzzy. The bigger T D̄fuzzy, the more sensitive is the algorithm
against noise and less against dynamics. The best performance
is achieved when the function threshold of D̄ tends to the
optimal normalized dynamics Dopt. The performance is very
close to the LBCA, with the difference that the LBCA can
still track at 24 dBHz.

Fig. 8 presents the variation of the loop-bandwidth for
different tracking techniques. Fig. 8a shows that, in a static
scenario, the average loop-bandwidth using the fuzzy logic
with T D̄fuzzy = Dopt is the closest to the LBCA method. The
average loop-bandwidth of the fuzzy logic with T D̄fuzzy = 0.05

25 30 35 40 45 50

0
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(a) Average loop-bandwidth in static scenario
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for Fuzzy Logic Technique

(b) Loop-bandwidth in dynamic scenario at 44 dBHz

Fig. 8: Loop-bandwidth variation for different variable loop-
bandwidth tracking techniques
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does not give much information, since the bandwidth tends to
more than 20 Hz, making the loop filter unstable. Therefore,
it is not included.

The same dynamic scenario with a maximum jerk of 7.8 g/s
is used as in [10]. In contrast to static scenarios, the quality
factor to indicate the performance of the tracking technique
in dynamic scenarios is the speed to react against signal
dynamics. Moreover, another parameter to consider is the
ability of the algorithm to reach to the minimum necessary
loop-bandwidth that can deal against dynamics. This is due to
the fact that a bigger loop-bandwidth can introduce noise in the
tracking loop and this can lead to a loss of lock, particularly, at
low C/N0. Fig. 8b shows the change of the loop-bandwidth
in the dynamic scenario for the different tracking methods.
The FAB reacts very slow against dynamics, losing at the
end the lock. The fuzzy logic with a scale factor S = 0.01
presents instead a good performance similar to the LBCA. In
the case of the fuzzy logic with S = 0.1, a threshold limiter is
added because the updated loop-bandwidth increases to values
bigger than 18 Hz. This fuzzy logic reacts faster against signal
dynamics, but with the drawback of being highly unstable at
high loop-bandwidths.

B. Complexity of the Variable Loop-Bandwidth Tracking Tech-
niques

One method to quantify the complexity of an adaptive
tracking technique is to measure the time each algorithm takes
to be performed. However, this approach depends on how
good the software implementation of the algorithm is and it
does not bring an objective comparison. Another option is
to count the required mathematical operations. This method
is chosen because it gives a fair complexity comparison
between algorithms. Table II shows the amount of additions,
multiplications and divisions required for each case.

FAB Fuzzy Logic LBCA
Additions 12 23 10

Multiplications 60 32 8
Divisions 6 4 1

TABLE II: Complexity of the Adaptive Loop-Bandwidth
Tracking Techniques

In the case of the FAB algorithm, the seventh root is approx-
imated by the derivation of the Newton-Raphson method [13],
and considering the result in the fifth iteration. The sigmoid-
based LBCA is approximated using a piecewise linear approx-
imation [14]. The algorithm with less complexity is the LBCA,
whereas the FAB presents the highest complexity due to the
estimation of the optimal loop-bandwidth.

V. CONCLUSION

This paper compares the performance and complexity be-
tween different state-of-the-art adaptive loop-bandwidth track-
ing techniques. The algorithms are implemented on the
GOOSE GNSS receiver platform. The FAB presents poor
tracking performance and is the most complex. The fuzzy

logic shows interesting results and it is a clear opponent for
the LBCA regarding the tracking performance. The LBCA
has superior tracking performance with the least amount of
complexity.

Future research includes the study of an improved FAB
algorithm with a cost function that is based on a sum of
weighted estimated statistics from the discriminator’s out-
put [15]. Moreover, a future objective is to implement the
Kalman filtering (KF)-based STL in GOOSE, measure the
tracking performance and complexity, and compare it to the
presented techniques.
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